来自:,另外根据自己关注的地方,加了点东西。
今天在cvchina论坛上看到的一篇帖子,总结了当前CV界最火的一些人。列举的比较全面了。bfcat还想补充几个,加在后面了。
CV人物1:Jianbo Shi史建波毕业于UC Berkeley,导师是Jitendra Malik。其最有影响力的研究成果:图像分割。其于2000年在PAMI上多人合作发表”Noramlized cuts and image segmentation”。这是图像分割领域内最经典的算法。主页:~jshi/ 和~jshi/
(补充:Jianbo Shi还有一个经典的工作就是KLT点跟踪算法,虽然KLT三个字母里面没有他的名字,但是这篇文章确实是源于他的经典论文:Good Features To Track)。
CV人物2:Kristen Grauman毕业于MIT,导师是Trevor Darrell。其最有影响力的研究成果:Pyramid Match Kernel,用于图像匹配。她和Darrell在2005年CVPR合作发表了”The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features”。金字塔匹配核函数可快速搜索两个特征集合之间匹配的特征,可应用于图像匹配、物体识别,是该领域经典算法之一。2011年Marr奖得主。主页:~grauman/
CV人物3:Irfan Essa现任教于Georgin Tech佐治亚理工大学,毕业于MIT,其最有影响力的研究成果:人脸表情识别。Essa和Alex Penland 在1997年PAMI合作发表了”Coding, analysis,interpretation,and recognition of facial expression”, 结合了几何模型和面部肌肉无力模型,用来描述脸部结构。主页:
CV人物4:Matthew Turk毕业于MIT,最有影响力的研究成果:人脸识别。其和Alex Pentland在1991年发表了”Eigenfaces for Face Recognition”.该论文首次将PCA(Principal Component Analysis)引入到人脸识别中,是人脸识别最早期最经典的方法,且被人实现,开源在OpenCV了。主页:~mturk/
CV人物5:David Lowe毕业于斯坦福大学,导师是Thomas Binfold,最有影响力的研究成果:SIFT。他是SIFT特征点检测的发明人。由于SIFT具有对于图像平移、旋转和尺度变化不变性的优点,使得SIFT成为近十年来最流行的图像特征点检测方法,被广泛用于图像匹配、物体识别、分类等领域。主页:~lowe/
CV人物7:Luc Van Gool毕业于Katholieke Universiteit Leuven.最有影响力的研究成果:图像特征点检测和摄像机标定。Gool等发蒙的Surf(speeded up robust features)是除SIFT外,应用最广泛的特征点检测算法,surf具有提取速度更快、维度更低的优点,也被广泛用于物体检测、识别等。Opencv开源。Marc Pollefeys, Koch和Goolz 1999年IJCV上发表了”self-calibration and metric reconstruction inspite of varying and unknown intrinsic camera parameters”,是摄像机自标定领域内最经典论文,并获1998年Marr奖。主页:~vangool/
CV人物8:Michal Irani毕业于Hebrew大学,最有影响力的研究成果:超分辨率。她和Peleg于1991年在Graphical Models and Image Processing发表了”Improving resolution by image registration”,提出了用迭代的、反向投影的方法来解决图像放大的问题,是图像超分辨率最经典的算法。我在公司实现的产品化清晰化增强算法就参考了该算法思想哈哈。主页:~irani/
CV人物9: Jean Ponce毕业于Paris Orsay,最有影响力的研究成果:计算机视觉教育、物体识别。他和David Forsyth合写的”Computer Vision: A Modern Approach”被视为现代计算机视觉领域最经典教科书之一。其近年来的研究重点是物体识别,是Spatial Pyramid Matching算法发明人之一,比起之前广泛使用的bag-of-words方法相比,该方法考虑了一些局部特征之间的空间关系,因此更有效地描述物体特征。是目前最普遍使用的算法之一。主页:~ponce/
CV人物10: Andrew Blake毕业于Edinburgh,最有影响力的研究成果:目标跟踪、图像分割、人体姿态跟踪与分析。他是世界知名CV专家,两次荣获ECCV最佳论文奖和1次Marr奖。他和Michael Isard在1998年IJCV中合写的”Condensation—conditional density propagation for visual tracking”,将粒子滤波器用于目标跟踪,该领域的经典论文。二人1998年合写的另一篇”Active Contours”是图像分割领域经典算法,该算法用spline函数,通过最小化能量函数,是的样条逼近物体轮廓,在该算法基础上,衍生出了著名的Active shape model。Blake领导的微软剑桥研究院在人体姿态跟踪与分析上去的突破,用于Kinect中。主页:~ablake
CV人物11: Antonio Criminisi毕业于牛津大学,导师是Andrew Zisserman 和 Ian Reid。最有吸影响力的研究成果:Image Inpaiting.他在2004年发表”Region filling and object removal by exemplar-based image inpainting”,该方法用于去除图像中大的遮挡物或小的刮痕,结合了采样纹理生成和结构传递的图像修补技术,获得不错效果。主页:
CV人物12: Paul Viola毕业于MIT,研究领域:目标检测;最有影响力的研究成果:人脸检测;他和Michael Jones在2001年CVPR发表了”Rapid object detection using a boosted cascade of simple features”,真正意义上解决了人脸检测的问题,并开启了boosting算法的一个时代,很多学者受到boosting cascade算法的影响,扩展了该算法的应用领域,牛逼的影响力。主页:
CV人物13: Henry Rowley毕业于CMU,导师:Takeo Kanade;研究领域:大规模图像识别和机器学习;最有影响力的研究成果:人脸检测;他使用人工神经网络用于人脸检测,该算法是Paul Viola的boosting cascade人脸检测算法出现前,最经典的人脸检测算法。主页:~har/
CV人物14: Dorin Comaniclu毕业于Rutgers;最有影响力的研究成果:目标跟踪、图像分割;他在2000年发表了”Real-time tracking of non-rigid objects using mean shift”。该算法首次将mean shift用于目标跟踪,并在2002年PAMI发表了”Mean shift: A robust approach toward feature space analysis”,并将Meanshift拓展应用于图像分割中。主页: